4.1 Article

Organ-specific dose coefficients derived from Monte Carlo simulations for historical (1930s to 1960s) fluoroscopic and radiographic examinations of tuberculosis patients

期刊

JOURNAL OF RADIOLOGICAL PROTECTION
卷 39, 期 3, 页码 950-965

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6498/ab2f10

关键词

medical diagnostic exposure; radiation dosimetry; epidemiology; x-rays; fluoroscopy

资金

  1. Intramural Research Program of the National Cancer Institute, National Institutes of Health

向作者/读者索取更多资源

This work provides dose coefficients necessary to reconstruct doses used in epidemiological studies of tuberculosis patients treated from the 1930s through the 1960s, who were exposed to diagnostic imaging while undergoing treatment. We made use of averaged imaging parameters from measurement data, physician interviews, and available literature of the Canadian Fluoroscopy Cohort Study and, on occasion, from a similar study of tuberculosis patients from Massachusetts, United States, treated between 1925 and 1954. We used computational phantoms of the human anatomy and Monte Carlo radiation transport methods to compute dose coefficients that relate dose in air, at a point 20 cm away from the source, to absorbed dose in 58 organs. We selected five male and five female phantoms, based on the mean height and weight of Canadian tuberculosis patients in that era, for the 1-, 5-, 10-, 15-year old and adult ages. Using high-performance computers at the National Institutes of Health, we simulated 2,400 unique fluoroscopic and radiographic exposures by varying x-ray beam quality, field size, field shuttering, imaged anatomy, phantom orientation, and computational phantom. Compared with previous dose coefficients reported for this population, our dosimetry system uses improved anatomical phantoms constructed from computed tomography imaging datasets. The new set of dose coefficients includes tissues that were not previously assessed, in particular, for tissues outside the x-ray field or for pediatric patients. In addition, we provide dose coefficients for radiography and for fluoroscopic procedures not previously assessed in the dosimetry of this cohort (i.e. pneumoperitoneum and chest aspirations). These new dose coefficients would allow a comprehensive assessment of exposures in the cohort. In addition to providing newly derived dose coefficients, we believe the automation and methods developed to complete these dosimetry calculations are generalizable and can be applied to other epidemiological studies interested in an exposure assessment from medical x-ray imaging. These epidemiological studies provide important data for assessing health risks of radiation exposure to help inform the current system of radiological protection and efforts to optimize the use of radiation in medical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据