4.8 Article

Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery

期刊

JOURNAL OF POWER SOURCES
卷 425, 期 -, 页码 162-169

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2019.04.010

关键词

Zinc ion battery; Cathode material; ZnMn2O4 nanoparticles; N-doped graphene; Excellent cycle performance

资金

  1. Natural Science Foundation of China [21371180]
  2. Hunan Provincial Science and Technology Plan Project [2017TP1001]

向作者/读者索取更多资源

Rechargeable aqueous zinc ion batteries are considered as a good substitute for large-scale energy storage due to their cost-effectiveness, materials abundance and safety. However, suitable cathode materials with high capacity and long cycling stability are still rare. Herein, we propose the first use of ZnMn2O4/N-doped graphene nano composite as cathode material, which exhibits a maximum discharge capacity of 221 mAh g(-1) at 100 mA g(-1), and ultralong cycle life with 97.4% capacity retention after 2500 cycles at 1000 mA g(-1). The outstanding performance is attributed to the synergistic effect of superfine ZnMn2O4 nanoparticles (21 nm) that provide rapid surface capacitive reaction and short electronic/ion transport path lengths, as well as the highly conductive N doped graphene medium that could facilities the fast electronic transport and stabilizes the composite structure to tolerate volume expansion during charge/discharge process. Significant insight into the zinc ion storage mechanism is confirmed by galvanostatic intermittent titration technique, ex-situ X-ray diffraction, and X-ray photoelectron spectroscopy characterizations. The long-term stability, high specific capacity together with the facile preparation method propose the ZnMn2O4/N-doped graphene hybrid a new class of competitive cathode material for zinc ion battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据