4.4 Article

A thermally remendable multiwalled carbon nanotube/epoxy composites via Diels-Alder bonding

期刊

JOURNAL OF POLYMER RESEARCH
卷 26, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/s10965-019-1804-7

关键词

Epoxy; Multiwalled carbon nanotubes; Diels-Alder; ATRP; Self-healing

向作者/读者索取更多资源

Mechanically robust and self-healing epoxy composites are highly desired to satisfy the increasing demand of high-performance smart materials. Herein, a dual functionalized epoxy composite (EpF-MWCNT-PA-BM) with self-healing performance based on Diels-Alder chemistry has been investigated. The furfuryl grafted epoxy (EpF) and furfuryl modified MWCNTs (MWCNT-F) are reacted with bifunctional maleimide (BM) and normal anhydride curing agent (PA) to form a covalently bonded and reversibly crosslinked epoxy composite with two types of intermonomer linkage. That is, thermally reversible Diels-alder bonds between the furan groups of both epoxy and MWNCTs with malemide and thermally stable bonds of epoxide and anhydride groups. MWCNTs act as both reinforcer and a healant in the epoxy composite. In this way, the cured epoxy composite possessed not only enhanced mechanical properties but also thermal remendability that enabled elimination of cracks. The latter function took effect as a result of successive retro-DA and DA reactions, which led to crack healing upto 79.82% healing efficiency in a controlled manner through chain reconnection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据