4.8 Article

PbI2-MoS2 Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 10, 期 15, 页码 4203-4208

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.9b01665

关键词

-

资金

  1. National Natural Science Foundation (NSF) of China [11874427]
  2. NSF of Hunan province [2016JJ1021]

向作者/读者索取更多资源

van der Waals (vdW) epitaxy offers a promising strategy without lattice and processing constraints to prepare atomically clean and electronically sharp interfaces for fundamental studies and electronic device demonstrations. Herein, PbI2 was thermally deposited at high-vacuum conditions onto CVD-grown monolayer MoS2 flakes in a vdW epitaxial manner to form 3D-2D heterojunctions, which are promising for vdW epitaxial growth of perovskite films. X-ray diffraction, X-ray photoemission spectroscopy, Raman, and atomic force microscopy measurements reveal the structural properties of the high-quality heterojunctions. Photoluminescence (PL) measurements reveal that the PL emissions from the bottom MoS2 flakes are greatly quenched compared to their as-grown counterparts, which can be ascribed to the band alignment-induced distinct interfacial charge-transfer behaviors. Strong interlayer excitons can be detected at the PbI2/MoS2 interface, indicating an effective type II band alignment, which can be further confirmed by ultraviolet photoemission spectroscopy measurements. The results provide a new material platform for the application of the vdW heterojunctions in electronic and optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据