4.7 Article

Photocycloaddition of S,S-Dioxo-benzothiophene-2-methanol, Reactivity in the Solid State and in Solution: Mechanistic Studies and Diastereoselective Formation of Cyclobutyl Rings

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 84, 期 15, 页码 9714-9725

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.9b01354

关键词

-

资金

  1. Office of Research Services at the University of Colorado Denver
  2. UROP award from the Office of Undergraduate Experiences at University of Colorado Denver
  3. National Science Foundation [CHE-1500285]
  4. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The formation of cyclobutane rings is a promising strategy in the development of potential drugs and/or synthetic intermediates, typically challenging to obtain due to their constrained nature. In this work, the [2 + 2] photocycloaddition reaction of S,S-dioxobenzothiophene-2-methanol was explored in microcrystalline powders and its outcome was compared to that observed in solution. It was found that the molecular constraints inherited within the crystal lattice provide an optimal environment that leads to photodimer 4 as the major product in ca. 9.6:0.4 diastereomeric ratios with conversions >95%. The photoreaction was analyzed via X-ray, displaying a crystalline-to-amorphous transformation and showing that units of monomer 2 align to generate the corresponding dimer with a syn-head-to-tail regio- and diastereoselectivity. This result contrasted with that obtained in solution, where the diastereomeric ratio varied as a function of the excited state that is generated, to yield mixtures of dimers 4 and 5 (anti-head-to-tail), or exclusively 5 in the tripletsensitized photoreaction, in the presence of benzophenone. Density functional theory was used to elucidate a plausible detailed mechanism for the phototransformation, which aided in justifying the results that led to the corresponding dimers. X-ray crystallography allowed us to establish the stereochemical assignment of the obtained cyclobutyl rings. Thus, the use of solidstate or solution photochemistry can be used to gain control of diastereo- and regioselectivities in the formation of this important moiety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据