4.5 Article

Refinement of the gonadotropin releasing hormone receptor I homology model by applying molecular dynamics

期刊

JOURNAL OF MOLECULAR GRAPHICS & MODELLING
卷 89, 期 -, 页码 147-155

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmgm.2019.03.009

关键词

Gonadotropin releasing hormone (GnRH); Homology model; GnRH receptor; Molecular dynamics; GPCR

资金

  1. State Scholarships Foundation (MY) through the Post-doctoral Financial Support action, Development of Human Resources, Education and Life-long learning action
  2. Hellenic Republic
  3. European Social Fund

向作者/读者索取更多资源

Sexual maturation of human cells in ovaries and prostate is linked to the biochemical cascade initiated by the activation of cell receptors through the binding of Gonadotropin Releasing Hormone (GnRH). The GnRH receptors (GnRHR) are part of the rhodopsin G-protein coupled receptor (GPCR) family and consist of seven trans-membrane helical domains connected via extra- and intra-cellular segments. The GnRH-GnRHR complex has been implicated in various forms of prostate and ovarian cancer. The lack of any structural data about the GnRH receptor impedes the design of antagonists for use in cancer treatment. The aim of the study is to devise a model of GnRHR to be used further for the design of improved peptide/non-peptide GnRH analogues and, to our knowledge provide new structural information regarding the extracellular loop 2 (ECL2) that acts a regulator of ligand entry to GnRHR. The common structural characteristics, of the members of the rhodopsin family of GPCRs, have been employed for the construction of a homology model for GnRHR. Structural information from the human beta 2-adrenergic receptor, as well as rhodopsins have been used in order to create a theoretical model for GnRHR. Furthermore, molecular dynamics (MD) simulations have been employed for the refinement of the model and to explore the impact of the bilayer membrane in GnRHR conformation. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据