4.7 Article

Controlling covalent functionalization of graphene oxide membranes to improve enantioseparation performances

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 582, 期 -, 页码 83-90

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2019.03.087

关键词

Enantioseparations; Graphene oxide membranes; Ionic liquid; Controlled covalent functionalization; Chiral recognition

资金

  1. National Natural Science Foundation of China [21576079, 91334203]
  2. 111 Project of Ministry of Education of China [B08021]
  3. Fundamental Research Funds for the Central Universities of China

向作者/读者索取更多资源

At present, the separation of racemates is still a great challenge due to their similarity in chemical structures and physicochemical properties. Here, we proposed a new strategy to improve the enantioseparation performances of graphene oxide (GO) based membranes via controlling the degree of functionalization (DF) of GO by the aid of an epoxide ring-opening reaction with a carboxyl-terminated ionic liquid (IL-COOH) as a spacer, followed by an amidation reaction of the l-glutamic acid (GO-IL-Glu) as chiral selectors. Results show that: i) these membranes are superior in the enantioselectivity and 1-3 orders of magnitude higher in the flux than traditional chiral separation membranes; ii) compared with l-glutamic acid modified GO membranes and their complex membranes with polypeptides in our previous work, they afford a ca. 40-80% increase in enantioselectivities and an order of magnitude increase in fluxes. Herein, IL-COOH groups can not only serve as a spacer, which is propitious to expanding the interlayer spacing of GO-IL-Glu nanosheets, thereby achieving high throughput of enantiomers, but also function as an active site to improve the grafting amount of chiral selectors (l-Glu), helpful for enhancing enantioselectivities. In particular, the flux is not compromised by the improved enantioselectivity in such membranes; on the contrary, it has an order of magnitude increase. Our findings suggest that the strategy used in this work, i.e., combining more chiral selectors with a wider interlayer spacing, could provide new opportunities for simultaneously facilitating high-flux and high-selectivity and a potential application in a great many enantio-and bio-separations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据