4.7 Article

3D printed spacers for organic fouling mitigation in membrane distillation

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 581, 期 -, 页码 331-343

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2019.03.040

关键词

Organic fouling; Membrane distillation; 3D printed spacers; Triply periodic minimal surfaces; Wastewater

资金

  1. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)
  2. Khalifa University of Science and Technology [RC2-2018-009]

向作者/读者索取更多资源

3D printing offers the flexibility to achieve favorable spacer geometrical modification. The role of 3D printed spacers for organic fouling mitigation in direct contact membrane distillation (DCMD) is evaluated. Compared to a commercial spacer, the design of 3D printed triply periodic minimal surfaces spacers (Gyroid and tCLP) - varying filament thickness and smaller hydraulic diameter enhanced DCMD fluxes by 50-65%. The highest DCMD flux was obtained with the 3D tCLP spacer due to its specific geometrical design feature. However, its design characteristics resulted in higher channel pressure drop compared to 3D Gyroid spacer. Moreover, 3D Gyroid spacer exhibited superior fouling mitigation (lower membrane organic mass deposition and reversible membrane hydrophobicity with humic acid solution), attributed to its tortuous design that repelled foulants. 3D Gyroid spacer was effective in achieving high water recovery (85%) while maintaining good quality distillate (10-15 mu S/cm, 99% ion rejection) in DCMD with wastewater concentrate that contained high organics, mixed with inorganics. In MD, high organic contents minimally affected MD fluxes but reduced membrane hydrophobicity. Repeated DCMD cycles showed that organic pre-treatment as well as cleaning-in-place of membrane and spacer are essential for achieving high recovery rate while maintaining a stable long-term DCMD operation with wastewater concentrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据