4.7 Article

Soil moisture estimation using two-component decomposition and a hybrid X-Bragg/Fresnel scattering model

期刊

JOURNAL OF HYDROLOGY
卷 574, 期 -, 页码 646-659

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2019.04.049

关键词

Soil moisture estimation (SME); PolSAR; Polarimetric decomposition; Gaofen-3; AIRSAR

资金

  1. National Natural Science Foundation of China [41771377, 41601355, 41501382]
  2. Hubei Provincial Natural Science Foundation [2016CFB246]
  3. National Basic Technology Program of Surveying and Mapping [2016KJ0103, 03-Y20A10-900115/16]

向作者/读者索取更多资源

Polarimetric synthetic aperture radar (PolSAR), as an advanced active sensor, can penetrate vegetation to detect ground information. The multimode observation data can provide more information to interpret different scattering mechanisms and have great application potential in soil moisture estimation (SME). In this paper, a modified method of soil moisture inversion from PoISAR data based on a two-component polarimetric decomposition model is introduced. The proposed method neglects the dihedral scattering component in the case of sparse vegetation cover and no-building areas, compensates the orientation angle by considering the influence of surface roughness and terrain slope, and calculates the dielectric constant with the hybrid X-Bragg/Fresnel model. Gaofen-3 (C-band) data from Ordos, Inner Mongolia, and Soil Moisture Experiment 2003 (SMEX03) airborne synthetic aperture radar (AIRSAR) (C- and L-band) data from Southern Oklahoma were applied in the experimental research. Furthermore, the performance and validity limits were assessed by comparing the retrieval results with in situ measurements and Soil Moisture Active Passive (SMAP) soil moisture products. The results reveal a root-mean-square error (RMSE) of 8.66% with an inversion rate of up to 61% when using the Gaofen-3 data from Ordos. For the Southern Oklahoma study area, the inversion RMSE of the AIRSAR C- and L-band data is 8.57% and 8.95%, respectively. The tendency of the inversion results is also consistent with the change trend of the site observations. In the bare soil and sparse vegetation covered areas, the retrieval error is relatively small, while in dense vegetation covered areas, soil moisture is underestimated in both the C- and L-band data, and the former is more underestimated than the latter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据