4.8 Article

Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy

期刊

JOURNAL OF HEPATOLOGY
卷 71, 期 3, 页码 505-515

出版社

ELSEVIER
DOI: 10.1016/j.jhep.2019.05.022

关键词

In vivo proton magnetic resonance spectroscopy; Hepatic encephalopathy; Brain metabolism; Bile duct ligated; Rats; Chronic liver disease; Cholestasis

资金

  1. SNSF [310030_173222/1]
  2. EU [316679 TRANSACT]
  3. CIBM (UNIL)
  4. CIBM (UNIGE)
  5. CIBM (HUG)
  6. CIBM (CHUV)
  7. CIBM (EPFL)
  8. CIBM (Leenaards Foundation)
  9. CIBM (Jeantet Foundation)
  10. CHUV
  11. HUG

向作者/读者索取更多资源

Background & Aims: The sequence of events in hepatic encephalopathy (HE) remains unclear. Using the advantages of in vivo 1H-MRS (9.4T) we aimed to analyse the time-course of disease in an established model of type C HE by analysing the longitudinal changes in a large number of brain metabolites together with biochemical, histological and behavioural assessment. We hypothesized that neurometabolic changes are detectable very early, and that these early changes will offer insight into the primary events underpinning HE. Methods: Wistar rats underwent bile-duct ligation (BDL) and were studied before BDL and at post-operative weeks 2, 4, 6 and 8 (n = 26). In vivo short echo-time H-1-MRS (9.4T) of the hippocampus was performed in a longitudinal manner, as were biochemical (plasma), histological and behavioural tests. Results: Plasma ammonium increased early after BDL and remained high during the study. Brain glutamine increased (+47%) as early as 2-4 weeks post-BDL while creatine (-8%) and ascorbate (-12%) decreased. Brain glutamine and ascorbate correlated closely with rising plasma ammonium, while brain creatine correlated with brain glutamine. The increases in brain glutamine and plasma ammonium were correlated, while plasma ammonium correlated negatively with distance moved. Changes in astrocyte morphology were observed at 4 weeks. These early changes were further accentuated at 6-8 weeks post-BDL, concurrently with the known decreases in brain organic osmolytes. Conclusion: Using a multimodal, in vivo and longitudinal approach we have shown that neurometabolic changes are already noticeable 2 weeks after BDL. These early changes are suggestive of osmotic/oxidative stress and are likely the premise of some later changes. Early decreases in cerebral creatine and ascorbate are novel findings offering new avenues to explore neuroprotective strategies for HE treatment. Lay summary: The sequence of events in chronic hepatic encephalopathy (HE) remains unclear, therefore using the advantages of in vivo proton magnetic resonance spectroscopy at 9.4T we aimed to test the hypothesis that neurometabolic changes are detectable very early in an established model of type C HE, offering insight into the primary events underpinning HE, before advanced liver disease confounds the findings. These early, previously unreported neurometabolic changes occurred as early as 2 to 4 weeks after bile-duct ligation, namely an increase in plasma ammonium and brain glutamine, a decrease in brain creatine and ascorbate together with behavioural and astrocyte morphology changes, and continued to progress throughout the 8-week course of the disease. (C) 2019 European Association for the Study of the Liver. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据