4.7 Article

Wavelet-spectral analysis of droplet-laden isotropic turbulence

期刊

JOURNAL OF FLUID MECHANICS
卷 875, 期 -, 页码 914-928

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.515

关键词

multiphase flow; isotropic turbulence; drops

资金

  1. National Science Foundation CAREER Award [ACI-1054591]

向作者/读者索取更多资源

The spectrum of turbulence kinetic energy for homogeneous turbulence is generally computed using the Fourier transform of the velocity field from physical three-dimensional space to wavenumber . This analysis works well for single-phase homogeneous turbulent flows. In the case of multiphase turbulent flows, instead, the velocity field is non-smooth at the interface between the carrier fluid and the dispersed phase; thus, the energy spectra computed via Fourier transform exhibit spurious oscillations at high wavenumbers. An alternative definition of the spectrum uses the wavelet transform, which can handle discontinuities locally without affecting the entire spectrum while additionally preserving spatial information about the field. In this work, we propose using the wavelet energy spectrum to study multiphase turbulent flows. Also, we propose a new decomposition of the wavelet energy spectrum into three contributions corresponding to the carrier phase, droplets and interaction between the two. Lastly, we apply the new wavelet-decomposition tools in analysing the direct numerical simulation data of droplet-laden decaying isotropic turbulence (in absence of gravity) of Dodd & Ferrante (J. Fluid Mech., vol. 806, 2016, pp. 356-412). Our results show that, in comparison to the spectrum of the single-phase case, the droplets (i) do not affect the carrier-phase energy spectrum at high wavenumbers (), (ii) increase the energy spectrum at high wavenumbers () by increasing the interaction energy spectrum at these wavenumbers and (iii) decrease the energy at low wavenumbers () by increasing the dissipation rate at these wavenumbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据