4.7 Article

Bifurcation analysis and frequency prediction in shear-driven cavity flow

期刊

JOURNAL OF FLUID MECHANICS
卷 875, 期 -, 页码 725-757

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.422

关键词

bifurcation; free shear layers; vortex shedding

资金

  1. GENCI (Grand Equipement National de Calcul Intensif) [A0032A06362, A0042A01119]

向作者/读者索取更多资源

A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers of structures which propagate along the top of the cavity and circulate in its interior. A branch of quasi-periodic states produced by secondary Hopf bifurcations transfers the stability from one limit cycle to the other. A full analysis of this scenario is obtained by means of nonlinear simulations, linear stability analysis and Floquet analysis. We characterize the temporal behaviour of the limit cycles and quasi-periodic state via Fourier transforms and their spatial behaviour via the Hilbert transform. We address the relevance of linearization about the mean flow. Although here the nonlinear frequencies are not very far from those obtained by linearization about the base flow, the difference is substantially reduced when eigenvalues are obtained instead from linearization about the mean and in addition, the corresponding growth rate is small, a combination of properties called RZIF (real zero imaginary frequency). Moreover growth rates obtained by linearization about the mean of one limit cycle are correlated with relative stability to the other limit cycle. Finally, we show that the frequencies of the successive modes are separated by a constant increment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据