4.7 Article

Coupled Cluster Theory with Induced Dipole Polarizable Embedding for Ground and Excited States

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 15, 期 8, 页码 4485-4496

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00468

关键词

-

向作者/读者索取更多资源

In this work, we present the theory and implementation of the coupled cluster single and double excitations (CCSD) method combined with a classical polarizable molecular mechanics force field (MMPol) based on the induced dipole model. The method is developed to compute electronic excitation energies within the state specific (SS) and linear response (LR) formalisms for the interaction of the quantum mechanical and classical regions. Furthermore, we consider an approximate expression of the correlation energy, originally developed for CCSD with implicit solvation models, where the interaction term is linear in the coupled cluster density. This approximation allows us to include the explicit contribution of the environment to the CC equations without increasing the computational effort. The test calculations on microsolvated systems, where the CCSD/MMPol method is compared to full CCSD calculations, demonstrates the reliability of this computational protocol for all interaction schemes (errors < 2%). We also show that it is important to include induced dipoles on all atom centers of the classical region and that too diffuse functions in the basis set may be problematic due to too strong interaction with the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据