4.4 Article

n-Butylamine production from glucose using a transaminase-mediated synthetic pathway in Escherichia coli

期刊

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
卷 129, 期 1, 页码 99-103

出版社

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2019.06.015

关键词

Transaminase; Cascade; n-Butylamine; Metabolic engineering; Escherichia colt

资金

  1. Special Coordination Funds for Promoting Science and Technology by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japa

向作者/读者索取更多资源

Bioamination methods using microorganisms have attracted much attention because of the increasing demand for environmentally friendly bioprocesses. n-Butylamine production from glucose in Escherichia coli was demonstrated in this study, which has never been reported because of the absence of n-butylamine-producing pathway in nature. We focused on a transaminase-mediated cascade for bioamination from an alcohol or aldehyde. The cascade can convert an alcohol or an aldehyde to the corresponding amine with L-alanine as an amine donor. Here, n-butyraldehyde, which is a metabolic intermediate in the n-butanol producing pathway, is a potential intermediate for producing n-butylamine using this cascade. Hence, the n-butanol-producing pathway and the transaminase-mediated cascade were combined into a synthetic metabolic pathway for producing n-butylamine from glucose. Firstly, we demonstrated the conversion of n-butanol to n-butylamine using a three enzyme-mediated cascade. n-Butanol was successfully converted to n-butylamine in 92% yield in the presence of L-alanine and ammonium chloride. Then, the n-butanol-producing pathway and transaminase-mediated cascade were introduced into E. coli. Using this system, n-butylamine was successfully produced from glucose as a carbon source at a concentration of 53.2 mg L-1 after 96 h cultivation using a ppc (phosphoenolpyruvate carboxylase)-deficient strain. To the best of our knowledge, this is the first report of the direct production of n-butylamine from glucose, and may provide a starting point for the development of microbial methods to produce other bioamines. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据