4.7 Article

Homology modeling, docking and structure-based virtual screening for new inhibitor identification of Klebsiella pneumoniae heptosyltransferase-III

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 38, 期 7, 页码 1887-1902

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2019.1624296

关键词

Homology modeling; virtual screening; pharmacophore; molecular docking; molecular dynamics simulation

资金

  1. UGC-D.S. Kothari postdoctoral fellowship
  2. UGC Non-NET fellowship

向作者/读者索取更多资源

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative opportunistic pathogen commonly associated with hospital-acquired infections that are often resistant even to antibiotics. Heptosyltransferase (HEP) belongs to the family of glycosyltransferase-B (GT-B) and plays an important in the synthesis of lipopolysaccharides (LPS) essential for the formation of bacterial cell membrane. HEP-III participates in the transfer of heptose sugar to the outer surface of bacteria to synthesize LPS. LPS truncation increases the bacterial sensitivity to hydrophobic antibiotics and detergents, making the HEP as a novel drug target. In the present study, we report the 3D homology model of K. pneumoniae HEP-III and its structure validation. Active site was identified based on similarities with known structures using Dali server, and structure-based pharmacophore model was developed for the active site substrate ADP. The generated pharmacophore model was used as a 3D search query for virtual screening of the ASINEX database. The hit compounds were further filtered based on fit value, molecular docking, docking scores, molecular dynamics (MD) simulations of HEP-III complexed with hit molecules, followed by binding free energy calculations using Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA). The insights obtained in this work provide the rationale for design of novel inhibitors targeting K. pneumoniae HEP-III and the mechanistic aspects of their binding. Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据