4.2 Article

Muscle Synergies Modify Optimization Estimates of Joint Stiffness During Walking

出版社

ASME
DOI: 10.1115/1.4044310

关键词

muscle synergies; motor modules; musculoskeletal modeling; static optimization; synergy optimization; muscle stiffness; joint stiffness

资金

  1. Cancer Prevention and Research Institute of Texas (CPRIT) [RR170026]

向作者/读者索取更多资源

Because of its simplicity, static optimization (SO) is frequently used to resolve the muscle redundancy problem (i.e., more muscles than degrees-of-freedom (DOF) in the human musculoskeletal system). However, SO minimizes antagonistic co-activation and likely joint stiffness as well, which may not be physiologically realistic since the body modulates joint stiffness during movements such as walking. Knowledge of joint stiffness is limited due to the difficulty of measuring it experimentally, leading researchers to estimate it using computational models. This study explores how imposing a synergy structure on the muscle activations estimated by optimization (termed synergy optimization, or SynO) affects calculated lower body joint stiffnesses during walking. By limiting the achievable muscle activations and coupling all time frames together, a synergy structure provides a potential mechanism for reducing indeterminacy and improving physiological co-activation but at the cost of a larger optimization problem. To compare joint stiffnesses produced by SynO (2-6 synergies) and SO, we used both approaches to estimate lower body muscle activations and forces for sample experimental overground walking data obtained from the first knee grand challenge competition. Both optimizations used a custom Hill-type muscle model that permitted analytic calculation of individual muscle contributions to the stiffness of spanned joints. Both approaches reproduced inverse dynamic joint moments well over the entire gait cycle, though SynO with only two synergies exhibited the largest errors. Maximum and mean joint stiffnesses for hip and knee flexion in particular decreased as the number of synergies increased from 2 to 6, with SO producing the lowest joint stiffness values. Our results suggest that SynO increases joint stiffness by increasing muscle co-activation, and furthermore, that walking with a reduced number of synergies may result in increased joint stiffness and perhaps stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据