4.4 Article

Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds

期刊

JOURNAL OF BIOMATERIALS APPLICATIONS
卷 34, 期 5, 页码 640-650

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328219865068

关键词

Nanofiber; electrospinning; polypyrrole; mesenchymal stem cell; osteogenic differentiation

向作者/读者索取更多资源

The aim of this study was to develop random and aligned polyacrilonitrile (PAN)/polypyrrole (PPy) nanofibrous scaffolds by electrospinning technique for osteogenic differentiation of mesenchymal stem cells. Nanofibers were fabricated successfully as straight, smooth, and free from bead formation. The average diameter of random and aligned nanofibers was 268(+/- 49) nm and 225(+/- 72) nm, respectively. Alignment process increased the tensile strength of nanofibers 3.9-fold, while the tensile strain of nanofibers decreased by 78%. PAN/PPy nanofibers were hydrophilic with the contact angle value of about 32 degrees and alignment did not affect the contact angle value. Random and aligned PAN/PPy nanofibers were investigated as a scaffold material for osteogenic differentiation of D1 ORL UVA mouse bone marrow mesenchymal stem cells. Cells were able to attach and grow on nanofibers confirmed by cell viability results. Stem cells that were cultured with osteogenic induction were able to mineralize on electrospun nanofibers based on alizarin red and Von Kossa dye staining. For aligned PPy nanofibers, mineralization occurred in the fiber alignment direction. Consequently, PAN/PPy nanofibrous mats in both random and aligned forms would be potential candidates for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据