4.6 Article

A K+/Na+ co-binding state: Simultaneous versus competitive binding of K+ and Na+ to glutamate transporters

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 294, 期 32, 页码 12180-12190

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA119.009421

关键词

membrane transport; neurotransmitter transport; electrophysiology; kinetics; potassium transport

资金

  1. National Science Foundation [1515028]
  2. United States-Israel Binational Science Foundation [2007051]
  3. Div Of Molecular and Cellular Bioscience
  4. Direct For Biological Sciences [1515028] Funding Source: National Science Foundation

向作者/读者索取更多资源

Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+. This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据