4.5 Article

On Incompressibility Constraint and Crack Direction in Soft Solids

出版社

ASME
DOI: 10.1115/1.4044089

关键词

-

资金

  1. Israel Science Foundation [ISF-198/15]

向作者/读者索取更多资源

Most soft materials resist volumetric changes much more than shape distortions. This experimental observation led to the introduction of the incompressibility constraint in the constitutive description of soft materials. The incompressibility constraint provides analytical solutions for problems which, otherwise, could be solved numerically only. However, in the present work, we show that the enforcement of the incompressibility constraint in the analysis of the failure of soft materials can lead to somewhat nonphysical results. We use hyperelasticity with energy limiters to describe the material failure, which starts via the violation of the condition of strong ellipticity. This mathematical condition physically means inability of the material to propagate superimposed waves because cracks nucleate perpendicular to the direction of a possible wave propagation. By enforcing the incompressibility constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpendicular to longitudinal waves. In the present work, we show that such scenario, indeed, occurs in the problems of uniaxial tension and pure shear of natural rubber. We also find that the suppression of longitudinal waves via the incompressibility constraint does not affect the consideration of the material failure in equibiaxial tension and the practically relevant problem of the failure of rubber bearings under combined shear and compression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据