4.7 Article

Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 788, 期 -, 页码 240-247

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.02.202

关键词

Na3V2(PO4)(3); Carbon matrix; Expanded graphite; Sodium-ion battery; Cathode

资金

  1. National Natural Science Foundation of China [51577094, 21503112]
  2. Natural Science Foundation of Jiangsu Province of China [BK20180086]
  3. 100 Talents Program of Nanjing Normal University

向作者/读者索取更多资源

Na-superionic conductor-structured Na3V2(PO4)(3) is extensively investigated as a promising cathode material for sodium-ion batteries. Unfortunately, the Na3V2(PO4)(3) cathode suffers from low rate capability due to its inherent low electric conductivity. One of the general solutions to this dilemma is to embed the Na3V2(PO4)(3) nanoparticles uniformly within carbon matrix, however, the effect of carbon matrix categories on the sodium storage performance of Na3V2(PO4)(3) is unclear. Here we systematically compare the influence of different carbon matrix on the electrochemical properties of the Na3V2(PO4)(3) cathode and find that expanded graphite outperforms carbon nanotubes and carbon black as carbon matrix. As a result, the as-synthesized Na3V2(PO4)(3)/expanded graphite composite delivers a high reversible capacity of 111.4 mAh g(-1) at 1C, superior rate capability (105 mAh g(-1) at 50C), and ultralong cycle life (48 mAh g(-1) after 20,000 cycles at 50C), which are better than most Na3V2(PO4)(3)-based composites reported previously. Moreover, the remarkable electrochemical performance of Na3V2(PO4)(3)/expanded graphite in symmetric cells further advances the practical application of sodium-ion batteries. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据