4.7 Article

Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 788, 期 -, 页码 422-428

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.02.245

关键词

Gas sensor; Hydrothermal method; Copper oxide; Graphene oxide; Selectivity; Stability

资金

  1. Department of Science and Technology (DST) [DST/INSPIRE Fellowship/2012/647]

向作者/读者索取更多资源

Commercialization of a chemical sensor relies on the sensing performance, stability and selectivity for detecting gases at different environmental conditions. Here, we report ammonia sensors based on copper oxide (CuO) and reduced graphene oxide (rGO) nanocomposite with a hierarchical structure. The employed surfactant-free hydrothermal method for the sensing element synthesis is found to be efficient in yielding hierarchical nanoarchitectures. The synthesized CuO and rGO-CuO nanocomposite were characterized for structural, morphological, optical and surface adsorption properties. In order to understand the sensing properties, the printed sensors with pristine CuO and rGO-CuO composite were subjected to concentration, temperature and time-dependent ammonia sensing measurements. The rGO-CuO nanocomposite sensor showed an enhanced sensor response of 13 at room temperature (30 degrees C) and 30 at 300 degrees C, respectively which is a 10-fold increase as compared to pristine CuO based device. The selectivity experiments were carried out by exposing the sensor to ethanol, methanol, acetone, and ammonia. The sensor showed the highest response towards ammonia in comparison with other test gases. The observed sensing performance suggests the applicability of the present sensors to room temperature and elevated temperature operations. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据