4.7 Article

Effects of oversized tungsten on the primary damage behavior in Fe-W alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 794, 期 -, 页码 482-490

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.04.278

关键词

Fe-W alloys; Oversized alloying element; Primary damage; C15 clusters; Defect formation energies

资金

  1. Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (Battelle Energy Alliance)
  2. LDRD Program
  3. Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Award
  4. U.S. Department of Energy [DE-AC07-05ID14517]

向作者/读者索取更多资源

Tungsten (W) is proposed to replace molybdenum (Mo) as an alternative minor alloying element in iron (Fe) based ferritic alloys to reduce the activation time upon irradiation. Tungsten, which is about 10.5% larger in atomic radius or 34.8% larger in atomic volume than Fe, can induce both global volume expansion and local lattice distortion in the Fe matrix. To understand how oversized W influences the defect production behavior in Fe-based alloys, molecular dynamics simulations are conducted to study the primary damage in three systems at 300 K: (a) unstrained pure Fe, (b) Fe-5at.%W (Fe-5W) alloy, and (c) strained pure Fe with the same volume expansion as the Fe-5W. Compared to the unstrained pure Fe, both Fe-5W and strained pure Fe result in producing more Frenkel pairs at high irradiation energies, indicating that the global volume expansion may lead to enhanced defect production. Meanwhile, the damaged Fe-5W alloy contains many C15 Laves-phase-like interstitial clusters, while the interstitial clusters in the unstrained and strained pure Fe systems are mainly crowdion bundles or dislocation loops. The average size of vacancy clusters in the Fe-5W alloy is much smaller than its counterparts in the two pure Fe systems. The average size of interstitial clusters in the Fe-5W alloy is also smaller than those in the two pure Fe systems. These results indicate that the local lattice distortion induced by oversized W can significantly influence the morphologies and size distributions of defect structures. Finally, defect formation energies are calculated to interpret the different defect production behaviors in these systems. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据