4.5 Article

Structural Behavior of Digitally Fabricated Thin-Walled Timber Columns

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219455419501268

关键词

Mechanical integral joints; press-fit; experimental analysis; numerical analysis

资金

  1. Australian Research Council [DE160100289]
  2. Australian Government Research Training Program Scholarship
  3. Australian Research Council [DE160100289] Funding Source: Australian Research Council

向作者/读者索取更多资源

This paper aims to investigate the structural behavior of digitally fabricated thin-walled timber sections with edge connectivity provided by integral mechanical press-fit joints. Experimental, numerical, and analytical investigations have been developed to accurately characterize the press-fit section behavior and their failure modes. Plywood fiber orientation, material thickness, and connection tightness are considered as potential factors that may affect the performance of the press-fit jointing system. Experimental testing of square hollow sections (SHSs) under uniaxial compressive loading showed failure of sections through both conventional crushing and novel pop-off bifurcation failures. Pop-off buckling behaviors were shown to be governed by the integral joint transverse stiffness and its magnitude relative to a critical edge stiffness value. Columns with joint transverse stiffness value less than the critical edge stiffness value exhibited pop-off failures. These joint stiffness values were obtained from testing of unloaded joints and were used to obtain accurate predictions of column failure modes. Joint stiffness values for loaded joints were then predicted with an interpolation model mapping axial strain to a tighter connection tolerance and these were used to obtain accurate estimations for column failure load in most of the tested column types. Comparative investigations showed thin-walled sections with integral joints only to be capable of matching the compressive capacities of glued sections, for instances where crushing governed. Similarly, the weight-specific compressive capacity of timber sections was found to be comparable to thin-walled steel sections when crushing governs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据