4.7 Review

Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 564, 期 -, 页码 59-76

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2019.03.063

关键词

Cholesterol; Cyclodextrin; Liposome; Membrane; Phospholipid

资金

  1. Research Funding Program at the Lebanese University
  2. Agence Universitaire de la Francophonie, Projet de Cooperation Scientifique Inter-universitaire (PCSI)

向作者/读者索取更多资源

Cyclodextrins (CDs) are cyclic oligosaccharides able to improve drug water solubility and stability by forming CD/drug inclusion complexes. To further increase drug entrapment and delay its release, the CD/drug inclusion complex can be embedded in the aqueous phase of a liposome, a lipid vesicle composed of phospholipid bilayer surrounding an aqueous compartment. The resulting carrier is known as drug-in-cyclodextrin-in-liposome (DCL) system. CDs and DCLs are recognized as effective drug delivery systems; therefore, understanding the interaction of CDs with liposomal and biological membranes is of great importance. CDs are able to extract phospholipids, cholesterol, and proteins from membranes; the effect depends on the membrane structure and composition as well as on the CD type and concentration. Under definite conditions, CDs can affect the membrane fluidity, permeability, and stability of liposomes and cells, leading to the leakage of some of their internal constituents. On the other side, CDs demonstrated their beneficial effects on the membrane structure, including preservation of the membrane integrity during freeze-drying. In this paper, we review the literature concerning the interaction of CDs with biomimetic and biological membranes. Moreover, the impact of CDs on the membrane properties, mainly fluidity, stability, and permeability, is highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据