4.6 Article

A novel heat sink design for simultaneous heat transfer enhancement and pressure drop reduction utilizing porous fins and magnetite ferrofluid

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-12-2018-0810

关键词

Convection; Ferrofluid; Heat sink; Pressure drop; Porous fins; Nanofluid; Magnetite; Convection heat transfer enhancement; Pressure drop reduction

向作者/读者索取更多资源

Purpose With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally accompanied by undesirable increase of pressure drop and consequently a pumping power penalty. The current study aims to present a novel and easy method to manufacture a mini heat sink using porous fins and magnetite nanofluid (Fe3O4/water) as the coolant for simultaneous heat transfer enhancement and pressure drop reduction. Design/methodology/approach A three-dimensional numerical study is carried out to evaluate the thermal and hydrodynamic performance of the mini heat sink at different volume fractions, porosities and Reynolds numbers, using finite volume method. The solver specifications for discretization of the domain involve the SIMPLE, second-order upwind and second order for pressure, momentum and energy, respectively. Findings Results show that porous fins have a favorable effect on both heat transfer and pressure drop compared to solid fins. Creation of a virtual velocity slip on the channel-fin interfaces similar to the micro scale conditions and the flow permeation into the porous fins are the main mechanisms of pressure drop reduction. On the other hand, the heat transfer enhancement is attributed to the increase of the solid-fluid contact area and the improvement of the flow mixing because of the flow permeation into the porous fins. An optimal porosity for maximum convective heat transfer enhancement is obtained as a function of Reynolds number. However, taking both pressure drop and heat transfer effects into account, the overall heat sink performance is shown to be improved at high of Reynolds numbers, volume fractions and fin porosities. Originality/value A maximum of 32 per cent increase of convective heat transfer is achieved along with a maximum of 33 per cent reduction in the pressure drop using porous fins and ferrofluid in heat sink.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据