4.7 Article

Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 14, 期 -, 页码 4741-4754

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S210517

关键词

antidiabetic; antibacterial; antioxidant; cytotoxicity; silver nanoparticles; Ipomoea batatas

资金

  1. Dongguk University-Seoul, Republic of Korea
  2. Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program - Ministry of Agriculture, Food and Rural Affairs (MAFRA) [118056-2]
  3. Korea Environmental Industry & Technology Institute [A117-00197-0703-0]
  4. TDU, Bengaluru, India

向作者/读者索取更多资源

Background: Ipomoea batatas (L.) Lam.(Ib) has high content of various beneficial nutrients which helps in improving and maintaining human health. It is well known as a functional food and also a valuable source of unique natural products. It contains various phenolic and flavonoid bioactive compounds. Methods: In this study, using the outer peel of two varieties of Ib : Korean red skin sweet potato and Korean pumpkin sweet potato, silver nanoparticles (AgNPs) were synthesized (termed Ib1 AgNps and Ib2-AgNps), respectively. Characterization of Ib1-AgNPs and Ib2-AgNPs was carried out through scanning electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis, X-ray powder diffraction and UV-Vis spectroscopy. Further, the bio-potential of the synthesized AgNPs was investigated by antidiabetic (a-glucosidase assay), antioxidant (free radical scavenging assays), antibacterial (disc diffusion method) and cytotoxicity assays (cell viability against HepG2 cells). Results: FT-IR spectroscopy revealed the contribution of bioactive compounds existing in Ib1 and Ib2 extracts, in the biosynthesis and equilibrium of the AgNPs. Although the Ib2-AgNPs had a higher atomic percentage of Ag in comparison with Ib1-AgNPs, in the antidiabetic assay, the inhibition percentage of a-glucosidase was higher for AgNPs of Ib1 than Ib2, at all three concentrations examined. From the cytotoxicity results, HepG2 cancer cells were more sensitive to the Ib1-AgNPs in comparison to the Ib2-AgNPs-treated HepG2 cells. The antioxidant prospective was higher in Ib2-AgNPs than Ib1-AgNPs. Moreover, the Ib2-AgNPs showed inhibitory action against all five tested pathogenic bacteria, producing an inhibition zone of 8.74-11.52 mm while Ib1-AgNPs had an inhibitory effect on four of them, with an 8.67-11.23 (mm) inhibition zone. Conclusions: Overall, the results concluded that the Ib2-AgNPs exhibited relatively higher functional activity than Ib1-AgNPs, which might be credited to the greater abundance of bioactive compounds existing in Ib2 extract that acted as reducing as well as capping agents in the synthesis of Ib2-AgNPs. Overall, the current study highlights a novel cost-effective and eco-friendly AgNPs synthesis using food waste peels with biocompatibility and could be potentially utilized in biomedical and pharmaceutical industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据