4.7 Article

Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 44, 期 29, 页码 14877-14888

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.04.073

关键词

Solution blow spinning; Hollow fibres; NiO/Carbon composite; Electrocatalyst; Oxygen evolution reaction

资金

  1. CNPq [447797/2014-0, 311883/2016-8]
  2. CAPES (Brazil)
  3. Foundation for Science and Technology Portugal, FCT [PTDC CTM-ENE/6319/2014, UID/CTW50011/2013, CENTRO-01-0145-FEDER-022083, IF/01344/2014/CP1222/CT0001, IF/01174/2013]
  4. QREN
  5. COMPETE Portugal
  6. European Union
  7. CICECO-Aveiro Institute of Materials (FCT) [UID/CTW50011/2013, POCI-01-0145-FEDER-007679, POCI-01-0145-FEDER-016422, SAICTPAC/0032/2015]
  8. national funds through the FCT/MEC
  9. CAPES
  10. FEDER under the PT2020 Partnership Agreement
  11. FCT [PD/BDE/114353/2016]
  12. FEDER
  13. Fundação para a Ciência e a Tecnologia [SAICTPAC/0032/2015, PD/BDE/114353/2016] Funding Source: FCT

向作者/读者索取更多资源

The development of efficient electrocatalysts for slow reaction of the oxygen evolution reaction (OER) is fundamental for viability of the electrochemical water splitting technologies. Here we report for the first time the synthesis of NiO/carbon hollow fibres (NiO-HF) by the Solution Blow Spinning (SBS) technique, and a study of their catalytic activity towards the OER in alkaline medium. The hollow fibres were obtained with ca. 300 nm in diameter consisting of agglomerated NiO nanoparticles with an average size of 50 nm which is close to the tubular wall thickness. The formation mechanism of the hollow structure was discussed. It was revealed that the carbon from polyenic branch of polyvinylpyrrolidone (PVP) resists the firing treatment and acts as an agglomerating agent, thus ensuring a conductive and percolating path between NiO nanoparticles along the fibres. A battery of electrochemical tests of NiO-HF supported by commercial Ni foam reveals excellent electrochemical activity for OER in 1 M KOH, in comparison with reference NiO nanoparticles (NiO-NP, diameter ca. 23 nm). NiO-HF attains an overpotential of 340 mV vs. RHE at a current density of 10 mA cm(-2), which is amongst the lowest values reported in the literature for undoped NiO. Chronopotentiometry reveals stable NiO-HF electrodes over 15 h under an electrolysis current of 25 mA cm(-2). Microscopic analysis shows that the fibrillar morphology is completely preserved after the electrolysis test. The remarkable performance of the NiO-HF catalyst is ascribed to the enhanced electronic conductivity resulting from the interpenetrating NiO-HF/carbon microstructure. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据