4.7 Article

Area-scalable high-heat-flux dissipation at low thermal resistance using a capillary-fed two-layer evaporator wick

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 135, 期 -, 页码 1346-1356

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2019.02.075

关键词

High-heat-flux dissipation; Low thermal resistance; Capillary-fed boiling; Sintered wick; Vapor chamber; Two-layer evaporator wick; Dryout

资金

  1. Toyota Motor Engineering and Manufacturing North America, Inc. under Purdue University
  2. Toyota Motor Engineering and Manufacturing North America, Inc. under Toyota Research Institute of North America

向作者/读者索取更多资源

A two-layer sintered porous evaporator wick for use in vapor chambers is shown to offer very high performance in passive high-heat-flux dissipation over large areas at a low thermal resistance. The two-layer wick has an upper cap layer dedicated to capillary liquid feeding of a thin base layer below that supports boiling. An array of vertical posts bridges these two layers for liquid feeding, while vents in the cap layer provide an unimpeded pathway for vapor removal from the base wick. The two-layer wick is fabricated using a combination of sintering and laser machining processes. The thermal resistance of the wicks during boiling is characterized in a saturated environment that replicates the capillary-fed working conditions of a vapor chamber evaporator. Thermal characterization tests are first performed using conventional single-layer evaporator wicks to analyze the effect of sintered particle size on capillary-fed boiling of water. Of the particle size ranges tested, wicks sintered from 180 to 212 mu m-diameter particles provided the best combination of high dryout heat flux and a low boiling resistance. A two-layer evaporator wick comprising particles of this optimal size and a 15 x 15 array of liquid feeding posts yielded a maximum heat flux dissipation of 485 W/cm(2) over a 1 cm(2) heat input area while also maintaining a low thermal resistance of only similar to 0.052 K/W. The thermal performance of the two-layer wick is Compared against various hybrid and biporous evaporator wicks previously investigated in the literature. While previous wick designs are typically restricted to small areas and low power levels or high surface superheats when dissipating such heat fluxes, the unique area-scalability of the two-layer wick design allows it to achieve an unprecedented combination of high total power and low-thermal-resistance heat dissipation over larger areas than were previously possible. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据