4.7 Article

How interlayer twist angles affect in-plane and cross-plane thermal conduction of multilayer graphene: A non-equilibrium molecular dynamics study

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2019.03.130

关键词

Multilayer graphene; Twist angle; In-plane thermal conduction; Cross-plane thermal conduction; Non-equilibrium molecular dynamics

资金

  1. Innovation Development and Demonstration Project of Ocean Economy [BHSF2017-19]
  2. National Natural Science Foundation of China [51776138]
  3. Tianjin Talent Development Special Support Program for High-Level Innovation and Entrepreneurship Team

向作者/读者索取更多资源

Graphene, a kind of emerging low dimensional carbon material, has admirable thermal properties with potential applications in the thermal management of aerospace and microelectronics fields. In recent studies, thermal properties of both conventional single-layer and multilayer graphene were extensively studied. However, few studies focused on that of multilayer graphene with twist angles, whose thermal properties are different from that of conventional graphene because of the existence of interlayer twist angles. Such knowledge gap hinders the potential applications. Therefore, the thermal conductivity of bilayer, 4-layers and 6-layer zigzag graphene with various twist angles is investigated utilizing non-equilibrium molecular dynamics at the typical temperature region in this study, and both in- and cross-plane thermal conductivity are investigated. The size of the studied graphene is 10 nm x 22 nm in the x-y plane, and the size in the z-direction depends on the number of layers. Moreover, the phonon vibrational density of state is also analyzed for mechanisms behind the thermal transport. The result indicates that a local maximum value can be found with the twist angle of 30 degrees for in-plane thermal conduction. The results also suggest that the highest thermal conductivity could be reached without any twist angles for both in and cross-plane conduction. The observation would provide an opportunity to study the characteristics of in-plane and cross-plane thermal transport of twisted multilayer graphene. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据