4.7 Article

Development of a high-temperature two-stage entrained flow gasifier model for the process of biomass gasification and syngas formation

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 43, 期 11, 页码 5864-5878

出版社

WILEY
DOI: 10.1002/er.4692

关键词

biomass gasification; CFD; entrained flow gasifier; numerical simulation; syngas formation

向作者/读者索取更多资源

This paper presents development of the Mitsubishi Heavy Industries (MHI) gasifier utilizing an analogy between a model with coal feedstock and the model with torrefied woody biomass. A computational fluid dynamics (CFD) model was primarily developed for coal gasification, and the simulation results were validated with similar published work and experimental measurements. The model was extended for the woody biomass to predict the gasifier performance under the gasification process. The results were used to compare the effect of fuel type on the gasifier performance and gaseous product compositions. The second-level injection nozzles were modified tangentially, and the flow characteristics, species yields, and temperature were evaluated. The possibility of reducing the gasifier length from 13 to 8 m is also evaluated for different total length. The results revealed that using woody biomass leads to a decrease in the mole fraction of CO and H-2 at the gasifier outlet compared with coal. An opposite trend was observed for CO2 and CH4 compositions. The contributions of modified second-level nozzles to the total gas composition and exit temperature only account for less than 3%. Reducing the gasifier length from 13 to 8 m increased the exit temperature from 1289 to 1340 K, but the changes in the exit gas composition were less than 2%. The new design of the MHI gasifier can reduce the investment costs by reducing the gasifier length as well as using biomass instead of coal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据