4.7 Review

A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 43, 期 13, 页码 6599-6638

出版社

WILEY
DOI: 10.1002/er.4607

关键词

degradation; diagnostic tools; durability; mitigation; redox flow battery; vanadium redox flow battery

资金

  1. National Research Council Canada
  2. National Research Council of Canada's Program of Energy Storage

向作者/读者索取更多资源

The all-vanadium redox flow battery (VRFB) is emerging as a promising technology for large-scale energy storage systems due to its scalability and flexibility, high round-trip efficiency, long durability, and little environmental impact. As the degradation rate of the VRFB components is relatively low, less attention has been paid in terms of VRFB durability in comparison with studies on performance improvement and cost reduction. This paper reviews publications on performance degradation mechanisms and mitigation strategies for VRFBs in an attempt to achieve a systematic understanding of VRFB durability. Durability studies of individual VRFB components, including electrolyte, membrane, electrode, and bipolar plate, are introduced. Various degradation mechanisms at both cell and component levels are examined. Following these, applicable strategies for mitigating degradation of each component are compiled. In addition, this paper summarizes various diagnostic tools to evaluate component degradation, followed by accelerated stress tests and models for aging prediction that can help reduce the duration and cost associated with real lifetime tests. Finally, future research areas on the degradation and accelerated lifetime testing for VRFBs are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据