4.7 Article

Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.04.023

关键词

Hydrogel polymers; Biodegradation; Water retention; Agrochemicals release

向作者/读者索取更多资源

This work reports the synthesis of lipase enzyme catalyzed biodegradable hydrogel interpenetrating polymer network (hydrogel-IPN) of natural gum polysaccharide i.e. gum tragacanth (GT) with acrylamide (AAm) and methacrylic acid (MAA) and their potential application in the delivery of agrochemicals. Biodegradation experiments were performed using composting and soil burial methods of biodegradation. Complete degradation of synthesized hydrogel-IPN occurred within 77 days using composting method, while using soil burial method 81.26% degradation occurred after 77 days. Furthermore, effect hydrogel-IPN degradation on the fertility of soil was also studied through macro-analysis of soil. Water retention capacity of clay soil and sandy loam soil was improved after mixing swelled sample of hydrogel-IPN with these soil samples. The potential of hydrogel-IPN was also tested for sustained and slow release of two agrochemicals i.e. urea and calcium nitrate. Kinetics of agrochemicals release revealed that the release rate of both the fertilizers was initially higher which kept on decreasing with time. Diffusion mechanism of agrochemicals followed Case-II diffusion type behavior. Therefore, synthesized hydrogel-IPN is important from agriculture view point and can be used for sustained and controlled release of agrochemicals. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据