4.7 Article

Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.03.033

关键词

Inonotus obliquus polysaccharides; Alzheimer's disease; Oxidative stress; Nrf2; Apoptosis

资金

  1. Thirteenth Five-Year Science and Technology Planning Project of Jilin Province in China [JJKH20190060KJ]

向作者/读者索取更多资源

Inonotus obliquus polysaccharide (IOPS) was initially separated and purified via precipitation from an aqueous extract with 80% alcohol, a DEAE-52 cellulose anion exchange column, and a Sephadex G-100 gel permeation chromatography system. LOPS was found to have a molecular weight of 111.9 kDa. In L-glutamic acid (L-Glu)-damaged HT22 cells, a 3-h pre-incubation with IOPS enhanced cell viability, inhibited apoptosis and caspase-3 activity, reduced the release of lactate dehydrogenase, restored the dissipated mitochondrial membrane potential, and suppressed the excess accumulation of intracellular reactive oxygen species. Compared with L-Glu-exposed cells, LOPS pre-treated cells exhibited reduced levels of Bcl-2 associated X protein (Bax) and Kelch-like ECH-associated protein 1 (Keap1) and enhanced levels of B-cell lymphoma-2 (Bcl-2), NF-E2p45-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase-1 (SOD-1), and cysteine ligase catalytic subunit. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week course of IOPS improved the pathological behaviors related to memory and cognition, reduced the deposition of beta-amyloid peptides and neuronal fiber tangles induced by enhanced phosphor-Tau in the brain, and modulated the levels of anti- and pro-oxidative stress enzymes. Additionally, IOPS enhanced the expression levels of Nrf2 and its downstream proteins, including HO-1 and SOD-1, in the brains of APP/PS1 mice. The present study successfully demonstrated the protective effect of LOPS against AD and revealed the possible mechanism underlying the ability of IOPS to modulate oxidative stress, especially Nrf2 signaling, and mediate mitochondrial apoptosis. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据