4.7 Article

Stimuli-responsive injectable cellulose thixogel for cell encapsulation

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2019.02.135

关键词

Cellulose; Thixotropy; Injectable hydrogel

资金

  1. International Design Center (IDC) at the Singapore University of Technology and Design
  2. SUTD Digital Manufacturing and Design Centre (DManD)
  3. National Additive Manufacturing Innovation Cluster (NAMIC)

向作者/读者索取更多资源

Herein, we present the synthesis of surface-oxidized cellulose nanofiber (CNF) hydrogel and characterization with various physicochemical analyses and spectroscopic tools as well as its suitability for cellular encapsulation and delivery. The structure-property relationship as shear thinning, thixotropy, creep-recovery and stimuli responsiveness are explored. The CNF hydrogel is capable to inject possessing shear thinning behavior at shear rate (similar to 10 s(-1)) range in the normal injecting process. In time-dependent thixotropy, the hydrogel showed rapid transform from flowable fluid back to structured hydrogel fully recovering in less than 60 s. The presence of cell-culture media did not alter shear thinning behavior of CNF hydrogel and showed increased thixotropicity with respect to the control gel. The CNF hydrogel forms 3D structures, without any crosslinker, with a wide range of tunable moduli (similar to 36-1000 Pa) based on concentration and external stimuli. The biological characteristics of the thixotropic gels are studied for human breast cancer cells and mouse embryonic stem cells and indicated high cell viability, long-term survival, and spherical morphology. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据