4.5 Article

How seed defense and seed abundance predict dispersal and survival patterns in Camellia

期刊

INTEGRATIVE ZOOLOGY
卷 15, 期 2, 页码 103-114

出版社

WILEY
DOI: 10.1111/1749-4877.12408

关键词

plant defense; predator satiation; saponins; seed dispersal; seedling establishment

类别

资金

  1. National Key Research and Development Program of China [2017YFC0503802, 2016YFC0500105]
  2. National Natural Science Foundation of China [31770565, 31270470]
  3. State Key Laboratory of Integrated Management of Pest Insects and Rodents [ChineseIPM1718]

向作者/读者索取更多资源

Little is known about how seed defense and seed abundance interact with behavioral responses of seed dispersers to predict dispersal and survival dynamics in animal-dispersed plants. By tracking the fate of individual seeds in Camellia stands with high and low seed abundance in Southwest China in 2007, we investigated the dispersal and survival of 2 high-saponin Camellia species (Camellia oleifera and Camellia sinensis and 1 non-saponin species (peanut Arachis hypogaea) as a control. Saponins in Camellia seeds are chemical compounds that act as seed defense. Our results were most consistent with the predictions based on the predator satiation hypothesis and the plant defense hypothesis. At the abundant Camellia stand (predators and dispersers were satiated), more Camellia seeds survived at the source but fewer were hoarded and survived at cache sites. At the sparse Camellia stand (predators and dispersers were not satiated), no Camellia seeds survived at the source, but more Camellia seeds were hoarded and survived at cache sites. Unlike Camellia seeds, no peanuts survived at the source at both stands, while more peanuts were hoarded and then survived at cache sites in the abundant Camellia stand compared to none at the sparse Camellia stand. In addition, the 2 Camellia species showed similar trends for seed fates across different dispersal stages. Our study indicates that the combined effects of seed abundance and seed defense, compared to their separate effects, provide a more accurate prediction for dispersal and survival patterns in animal-dispersed Camellia species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据