4.6 Article

Programmable Disassembly of Polymer Nanoparticles through Surfactant Interactions

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 58, 期 46, 页码 21003-21013

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.9b01991

关键词

-

资金

  1. ARC Discovery grant [DP190103073]

向作者/读者索取更多资源

The disassembly of well-defined random copolymer nanoparticles to unimers at precise times can be programmed through the strong interaction with the surfactant, sodium dodecyl sulfate (SDS). The random copolymers consisted of thermoresponsive and self-degradable monomer units, rapidly self-assembled in water above the lower critical solution temperature of the thermoresponsive polymer component into SDS-stabilized polymer nanoparticles at a high weight fraction of polymer, a fully reversible process. Increasing the SDS concentration resulted in an increase in the nanoparticle size from similar to 60 to similar to 500 nm while maintaining a very narrow particle size distribution. These particles once formed were stable even under highly dilute conditions (i.e., an similar to 10-fold dilution). Due to the self-catalyzed hydrolysis of the (N,N-dimethylaminoethyl acrylate) (DMAEA) to acrylic acid within the polymer, the nanoparticles rapidly disassembled back to unimers when the LCST of the hydrolyzed polymer was equal to or greater than the set solution temperature of 37 degrees C. The time to disassembly from nanoparticle to unimer was programmed through the amount of hydrophobic (butyl acrylate or styrene) units in the copolymer in combination with the amount of SDS. The higher hydrophopic content in the polymer resulted in longer disassembly times, while the higher SDS concentration reduced the disassembly time. Importantly, the self-catalyzed hydrolysis property of PDMAEA was not affected by SDS, allowing precise tunability of the time required for disassembly of the polymer nanoparticles. This active disassembly of nanoparticles provides a unique system that responds without an external trigger (e.g., light, heat, etc., ...) and could find applications where timed-release of compounds or timed activation of enzymes and other biocomponents is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据