4.6 Article

Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

期刊

APPLIED PHYSICS LETTERS
卷 109, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4964130

关键词

-

资金

  1. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. U.S. Department of Energy [DE-AC05-00OR22725]
  3. Department of Energy

向作者/读者索取更多资源

Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据