4.7 Article

Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2019.2922942

关键词

Bilevel optimization; cost function; direct collocation; gait; genetic algorithm; nested evolutionary algorithm; predictive simulation; stability; smoothness; walking

资金

  1. National Science Foundation [IIS-1526986]
  2. National Center for Simulation in Rehabilitation Research, Stanford University

向作者/读者索取更多资源

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying human gait. Predictive musculoskeletal simulation may be used for a variety of applications from designing assistive devices to testing theories of motor control. However, the underlying cost function for the predictive optimization is unknown and is generally assumed a priori. Alternatively, the underlying cost function can be determined from among a family of possible cost functions, representing an inverse optimal control problem that may be solved using a bilevel optimization approach. In this study, a nested evolutionary approach is proposed to solve the bilevel optimization problem. The lower level optimization is solved by a direct collocation method, and the upper level is solved by a genetic algorithm. We demonstrate our approach to solve different bilevel optimization problems, including finding the weights among three common performance criteria in the cost function for normal human walking. The proposed approach was found to be effective at solving the bilevel optimization problems. This approach should provide practical utility in designing assistive devices to aid mobility, and could yield insights about the control of human walking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据