4.7 Article

Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 28, 期 6, 页码 2991-3006

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2019.2893068

关键词

Hyperspetral imaging; blind unmixing; non-negative matrix factorization; log-sum penalty; non-local total variation regularization

资金

  1. China NSFC Project [61603292, 61661166011, 11690011, 61721002, 61603235]
  2. Natural Science Basic Research Program of Shaanxi Province [2018JQ1032]

向作者/读者索取更多资源

Blind hyperspectral unmixing (HU), as a crucial technique for hyperspectral data exploitation, aims to decompose mixed pixels into a collection of constituent materials weighted by the corresponding fractional abundances. In recent years, nonnegative matrix factorization (NMF)-based methods have become more and more popular for this task and achieved promising performance. Among these methods, two types of properties upon the abundances, namely, the sparseness and the structural smoothness, have been explored and shown to be important for blind HU. However, all of the previous methods ignore another important insightful property possessed by a natural hyperspectral image (HSI), non-local smoothness, which means that similar patches in a larger region of an HSI are sharing the similar smoothness structure. Based on the previous attempts on other tasks, such a prior structure reflects intrinsic configurations underlying an HSI and is thus expected to largely improve the performance of the investigated HU problem. In this paper, we first consider such prior in HSI by encoding it as the non-local total variation (NLTV) regularizer. Furthermore, by fully exploring the intrinsic structure of HSI, we generalize NLTV to non-local HSI TV (NLHTV) to make the model more suitable for the blind HU task. By incorporating these two regularizers, together with a non-convex log-sum form regularizer characterizing the sparseness of abundance maps, to the NMF model, we propose novel blind HU models named NLTV/NLHTV and log-sum regularized NMF (NLTV-LSRNMF/NLHTV-LSRNMF), respectively. To solve the proposed models, an efficient algorithm is designed based on an alternative optimization strategy (AOS) and alternating direction method of multipliers (ADMM). Extensive experiments conducted on both simulated and real hyperspectral data sets substantiate the superiority of the proposed approach over other competing ones for blind HU task.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据