4.6 Article

A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 66, 期 6, 页码 1505-1513

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2018.2874885

关键词

Biomedical sensors; blood oxygen level; heart rate; motion artifact removal; photoplethysmography; pulse oximetry; wearable devices

向作者/读者索取更多资源

Advances in several engineering fields have led to a trend toward miniaturization and portability of wearable biosensing devices, which used to be confined to large tools and clinical settings. Various systems to continuously measure electrophysiological activity through electrical and optical methods are one category of such devices. Being wearable and intended for prolonged use, the amount of noise introduced on sensors by movement remains a challenge and requires further optimization. User movement causes motion artifacts that alter the overall quality of the signals obtained, hence corrupting the resulting measurements. This paper introduces a fully wearable optical biosensing system to continuously measure pulse oximetry and heart rate, utilizing a reflectance-based probe. Furthermore, a novel data-dependent motion artifact tailoring algorithm is implemented to eliminate noisy data due to the motion artifact and measure oxygenation level with high accuracy in real time. By taking advantages of current wireless transmission and signal processing technologies, the developed wearable photoplethysmography device successfully captures the measured signals and sends them wirelessly to a mobile device for signal processing in real time. After applying motion artifact tailoring, evaluating accuracy with a continuous clinical device, the blood oxygenation measurements obtained from our system yielded an accuracy of at least 98%, when compared to a range of 93.6%-96.7% observed before from the same initial data. Additionally, heart rate accuracy above 97% was achieved. Motion artifact tailoring and removal in real time, continuous systems will allow wearable devices to be truly wearable and a reliable electrophysiological monitoring and diagnostics tool for everyday use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据