4.6 Article

River temperature and the thermal-dynamic transport of sediment

期刊

GLOBAL AND PLANETARY CHANGE
卷 178, 期 -, 页码 168-183

出版社

ELSEVIER
DOI: 10.1016/j.gloplacha.2019.04.011

关键词

River temperature; Fluid density; Kinematic viscosity; Settling velocity; Sediment transport

资金

  1. Mobil Corp
  2. Conoco-Phillips
  3. ExxonMobil
  4. Statoil
  5. National Science Foundation - Geography Spatial Sciences Program [1561082]
  6. Direct For Social, Behav & Economic Scie
  7. Division Of Behavioral and Cognitive Sci [1561082] Funding Source: National Science Foundation

向作者/读者索取更多资源

Spatial and temporal variability of river temperature, and its impact on sediment transport, is explored. Global river temperatures, computed daily using 1980-2010 climate, reflect latitudinal and seasonal variations in solar radiation, wind patterns, humidity, and water sources, and can be cooler or warmer than air temperatures. Subpolar, Polar and High Plateau rivers are cold (T-MEAN: < 8 degrees C), and of intermediate variability (To: 6 degrees to 10 degrees C), are highly sensitive to temperature variations, which together favor a river's ability to transport sediment. Temperate, Subtropical and Alpine rivers are of intermediate temperatures (T-MEAN: 5 degrees to 26 degrees C) with a maximum in variability (To: > 8 degrees); their transport responsiveness is dependent on their minimum temperature. Tropical rivers are warm (T-MEAN: > 25 degrees C), less sensitive to temperature swings, and possess a reduced sediment transport capacity; their narrow temperature variability (To: 1 degrees to 4 degrees C) favors finer-grained sediment transport. Fluid density of river water ranges by 3.5%, and more rarely increases by 170% and thereby increases sediment transport 2.8-fold. Kinematic viscosity has a global range of 72.5%, and works to reduce sediment transport as the river warms. A 25 degrees C increase in water temperature, due to some combination of river elevation descent, or flow to warmer latitudes, or seasonal increases, can increase grain settling velocities by 7.3%, 42%, 85%, 90% for a 1000-mu m, 250-mu m, 62.5-mu m, or a 10-mu m grain respectively, and reduce sediment transport by 90% for a grain size population centered at 62.5 mu m, or 300% if centered at 10 mu m. The common practice of using fluid density and temperature constants (rho(f )= 1000 kg/m(3), T = 20 degrees C) in transport models, can greatly under-predict subpolar and alpine river transport and over-predict sediment transport in a tropical river. Temperature variations impact rivers that transport a preponderance of fine sediment, a characteristic of most large rivers. These trends in river temperature and sediment transport have important ecological and anthropogenic implications. The effects on sediment transport will be especially important to quantify under a warming climate and where human influences, such as urbanization, may change the riverine thermal regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据