4.7 Article

Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields

期刊

EXPERIMENTAL NEUROLOGY
卷 317, 期 -, 页码 119-128

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2019.02.005

关键词

Ephaptic coupling; Electric fields; Hippocampus; Epilepsy; Non-synaptic propagation

资金

  1. National Institute of Health [NIH/NINDS 5R01NS060757-07, NIH/NIBIB 5T32EB004314-19]

向作者/读者索取更多资源

It is well documented that synapses play a significant role in the transmission of information between neurons. However, in the absence of synaptic transmission, neural activity has been observed to continue to propagate. Previous studies have shown that propagation of epileptiform activity takes place in the absence of synaptic transmission and gap junctions and is outside the range of ionic diffusion and axonal conduction. Computer simulations indicate that electric field coupling could be responsible for the propagation of neural activity under pathological conditions such as epilepsy. Electric fields can modulate neuronal membrane voltage, but there is no experimental evidence suggesting that electric field coupling can mediate self-regenerating propagation of neural activity. Here we examine the role of electric field coupling by eliminating all forms of neural communications except electric field coupling with a cut through the neural tissue. We show that 4-AP induced activity generates an electric field capable of recruiting neurons on the distal side of the cut. Experiments also show that applied electric fields with amplitudes similar to endogenous values can induce propagating waves. Finally, we show that canceling the electrical field at a given point can block spontaneous propagation. The results from these in vitro electrophysiology experiments suggest that electric field coupling is a critical mechanism for non-synaptic neural propagation and therefore could contribute to the propagation of epileptic activity in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据