4.5 Article

Heat transport features of magnetic water-graphene oxide nanofluid flow with thermal radiation: Stability Test

期刊

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
卷 76, 期 -, 页码 434-441

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.euromechflu.2019.04.008

关键词

GO (grapheme oxide) nanoparticles; Magnetic flow; Thermal radiation; Thin needle; Stability analysis

资金

  1. Deanship of Scientific Research at King Khalid University, Saudi Arabia

向作者/读者索取更多资源

This paper documents the incompressible hydro-magnetic flow and heat transfer analysis of water-Graphene oxide (GO) nanofluid. More exactly, the nanofluid flow occurs along a thin needle moving axially. Despite the fact that there seems to be various works on the subject in the existing literature, however, very few studies have been carried out to investigate the dual numerical solution for such flow. Consequently, the inspiration here is to look for dual numerical solutions for such a non-linear phenomenon along with the stability analysis of computed solutions. The governing coupled equations representing the mathematical formulation of the current physical problem were obtained from the equation of motion and the mass and the energy conservations by taking steady and incompressible flow. The numerical solution of governing set of simultaneous ordinary differential equations is computed with the assistance of Matlab solver bvp4c. This research aimed at revealing the conceivable impacts of existing fluid interaction parameters on non-dimensional velocity and temperature distributions. These computations exhibits that more than one solution is possible only in case of flow over shrinking needle for certain combinations of the parameters. The result shows that the skin friction coefficient increases in both solutions with higher nanoparticles volume fraction. Furthermore, an enhancement in local Nusselt number is noted as the thermal radiation parameter increases. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据