4.5 Article

Role of Eelgrass in the Coastal Filter of Contrasting Baltic Sea Environments

期刊

ESTUARIES AND COASTS
卷 42, 期 7, 页码 1882-1895

出版社

SPRINGER
DOI: 10.1007/s12237-019-00615-0

关键词

Benthic-pelagic coupling; Ecosystem metabolism; Nitrogen cycling; Dissolved organic matter; Seagrass; Sediment release

资金

  1. EU [2112932-1]
  2. Danish Research Council
  3. Academy of Finland [295443, 309748]
  4. Walter and Andree de Nottbeck Foundation
  5. Academy of Finland (AKA) [295443, 309748, 309748, 295443] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Coastal ecosystems act as filters of nutrients from land to the open sea. We investigated the role of eelgrass (Zostera marina) metabolism in the coastal filter transforming nitrogen, phosphorus, and organic carbon. Field campaigns following identical methodologies were carried out at two contrasting coastal locations: the mesohaline and nutrient-rich Roskilde Fjord, Denmark, and the mesotrophic brackish Tvarminne archipelago, Finland. Over the 24-h in situ benthic incubations, we measured oxygen concentrations continuously and assessed changes in DOM characteristics and net fluxes of carbon, nitrogen, and phosphorus. Ecosystem metabolism modeled on the basis of the O-2 data showed that the systems were either net heterotrophic (Roskilde Fjord; - 1.6 and - 2.4 g O-2 m(-2) day(-1) in eelgrass meadow and bare sand, respectively) or had balanced primary production and respiration (Tvarminne; 0.0 and 0.2 g O-2 m(-2) day(-1)). Overall, initial nutrient stoichiometry was a key factor determining benthic-pelagic fluxes of nutrients, which exacerbated the deviations from Redfield ratios of N and P, indicating an efficient use of the limiting nutrient. A net diel uptake of dissolved inorganic N was observed at both locations (- 2.3 mu mol l(-1) day(-1) in Roskilde Fjord and - 0.1 mu mol l(-1) day(-1) in Tvarminne). Despite minor changes in dissolved organic carbon concentrations during the incubations, a marked increase of fluorescent DOM was observed at both locations, suggesting rapid heterotrophic processing of the DOM pool. Our results underline that the biogeochemical role of eelgrass in the coastal filter is not inherent, but strongly dependent on the environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据