4.7 Article

Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 26, 期 23, 页码 23661-23678

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-05479-2

关键词

Nitrate reductase; Magnetite iron nanoparticles; Disinfection; Antagonistic activity; Wastewater treatment

向作者/读者索取更多资源

Disinfection of water and wastewater strongly contributes to solving the problem of water shortage in arid/semi-arid areas; cheap and ecofriendly approaches have to be used to meet water quality standards. In the present study, a green synthesis of iron nanoparticles (INPs) under aerobic and anaerobic conditions via nitrate reductases (NAP/NAR) enzymes produced by Proteus mirabilis strain 10B were employed for this target. The biosynthesized INPs were characterized; UV-Vis spectroscopy revealed surface plasmon resonance at 410 (aerobic) and 265 nm (anaerobic). XRD indicated crystalline magnetite ((MNPs) aerobically synthesized) and zerovalent INPs (ZVINPs anaerobically synthesized). EDX demonstrated strong iron signal with atomic percentages 73.3% (MNPs) and 61.7% (ZVINPs). TEM micrographs illustrated tiny, spherical, periplasmic MNPs (1.44-1.92 nm) and cytoplasmic ZVINPs with 11.7-60.8 nm. Zeta potential recorded - 31.8 mV (ZVINPs) and - 66.4 mV (MNPs) affirming colloidal stability. Moreover, the disinfection power of INPs was evaluated for standards organisms and real water (fresh, sea and salt mine) and wastewater (municipal, agricultural and industrial) samples. The results reported that INPs displayed higher antagonistic effect than iron precursor, 700 and 850 mu g/mL of MNPs and ZVINPs, respectively, was sufficient to show a drastic algicidal effect on algal growth. Both types of INPs demonstrated obvious dose-dependent antibiofilm efficiency. Due to their smaller size, MNPs were more efficient than ZVINPs at the suppression of microbial growth in all examined water samples. Overall, MNPs showed superior antagonistic activity, which promotes their exploitation in enhancing water/wastewater quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据