4.8 Article

Defect-Abundant Covalent Triazine Frameworks as Sunlight-Driven Self-Cleaning Adsorbents for Volatile Aromatic Pollutants in Water

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 15, 页码 9091-9101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b02222

关键词

-

资金

  1. National Natural Science Foundation of China [21876156, 21607130]
  2. Zhejiang Provincial Natural Science Foundation of China [LZ18B070001, LGF18E080017]

向作者/读者索取更多资源

Covalent triazine frameworks (CTFs) with high adsorption potential and photocatalytic ability features are expected to be designed as a new class of adsorbents that can regenerate themselves just by harnessing sunlight. To simultaneously improve both the adsorption and photocatalytic regeneration performance, a defect-abundant CTF-m was designed and tuned effectively by varying the lengths of benzene ring chains incorporated into the CTF backbone. It has been demonstrated that two kinds of defects in terms of broken benzene rings and pyrrole nitrogen were newly generated, other than the normal benzene rings and triazine units in the CTF-m skeleton. Benefiting from these defects, the adsorption sites with high energy for adsorbing volatile aromatic pollutants were significantly increased, which are reflected by higher saturated adsorption capacities of CTF-m (3.026 mmol/g for benzene (BEN), 1.490 mmol/g for naphthalene (NAP), and 0.863 mmol/g for phenol (PHE)) compared with those of CTF-1 and CTF-2. Furthermore, these defects narrowed the band structure and facilitated the separation of photogenerated charge carries, thus promoting photocatalytic regeneration. The percentage of CTF-m regenerated was still higher than 90% in the fourth cycle. These experimental results, together with the density functional theory (DFT) studies, soundly corroborated that the defects could optimize the adsorption and regeneration property of CTF-m. The present work highlights the potential of fabrication of defective CTFs as solar-driven self-cleaning adsorbents to remove pollutants from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据