4.8 Review

Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 17, 页码 10007-10022

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b02588

关键词

-

资金

  1. U.S NOAA, an Office of Science, Office of Atmospheric Chemistry, Carbon Cycle, and Climate Program [NA17 OAR430001, NA170AR4310002, NA170AR4310003]
  2. U.S. NSF Atmospheric Chemistry program [AGS-15S9607, AGS-1558966, AGS-1830748, AGS-1559598]
  3. Joint Fire Science Program [14-1-03-26]
  4. Office of Naval Research [N00014-16-1-2040]
  5. NOAA [NA160AR4310104]
  6. NASA [8ONSSC18K0630]
  7. NSF [AGS-1822664]
  8. DOE (BER, ASP Program) [DE-SC0006035]
  9. EPA (STAR grant) [R833747]
  10. DOE SCGP Fellowship Program (ORAU, ORISE)

向作者/读者索取更多资源

Biomass burning is a major source of atmospheric particulate matter (PM) with impacts on health, climate, and air quality. The particles and vapors within biomass burning plumes undergo chemical and physical aging as they are transported downwind. Field measurements of the evolution of PM with plume age range from net decreases to net increases, with most showing little to no change. In contrast, laboratory studies tend to show significant mass increases on average. On the other hand, similar effects of aging on the average PM composition (e.g., oxygen-to-carbon ratio) are reported for lab and field studies. Currently, there is no consensus on the mechanisms that lead to these observed similarities and differences. This review summarizes available observations of aging-related biomass burning aerosol mass concentrations and composition markers, and discusses four broad hypotheses to explain variability within and between field and laboratory campaigns: (1) variability in emissions and chemistry, (2) differences in dilution/entrainment, (3) losses in chambers and lines, and (4) differences in the timing of the initial measurement, the baseline from which changes are estimated. We conclude with a concise set of research needs for advancing our understanding of the aging of biomass burning aerosol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据