4.6 Article

Entropy Analysis of Carbon Nanotubes Based Nanofluid Flow Past a Vertical Cone with Thermal Radiation

期刊

ENTROPY
卷 21, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/e21070642

关键词

nanofluid; carbon nanotubes (SWCNTs and MWCNTs); solutal stratification; bioconvection; entropy generation

资金

  1. Zayed University, Abu Dhabi, UAE research fund

向作者/读者索取更多资源

Our objective in the present study is to scrutinize the flow of aqueous based nanofluid comprising single and multi-walled carbon nanotubes (CNTs) past a vertical cone encapsulated in a permeable medium with solutal stratification. Moreover, the novelty of the problem is raised by the inclusion of the gyrotactic microorganisms effect combined with entropy generation, chemical reaction, and thermal radiation. The coupled differential equations are attained from the partial differential equations with the help of the similarity transformation technique. The set of conservation equations supported by the associated boundary conditions are solved numerically with the bvp4c MATLAB function. The influence of numerous parameters on the allied distributions is scrutinized, and the fallouts are portrayed graphically in the analysis. The physical quantities of interest including the skin friction coefficient and the rate of heat and mass transfers are evaluated versus essential parameters, and their outcomes are demonstrated in tabulated form. For both types of CNTs, it is witnessed that the velocity of the fluid is decreased for larger values of the magnetic and suction parameters. Moreover, the value of the skin friction coefficient drops versus the augmented bioconvection Rayleigh number. To corroborate the authenticity of the presented model, the obtained results (under some constraints) are compared with an already published paper, and excellent harmony is achieved in this regard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据