4.7 Article

Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams

期刊

ENGINEERING WITH COMPUTERS
卷 36, 期 4, 页码 1739-1750

出版社

SPRINGER
DOI: 10.1007/s00366-019-00794-1

关键词

Nanocomposites; Multilayer functionally graded; Nonlinear resonance; Graphene platelets; Size effect

向作者/读者索取更多资源

In the current investigation, based upon the nonlocal strain gradient theory of elasticity, an inhomogeneous size-dependent beam model is formulated within the framework of a refined hyperbolic shear deformation beam theory. Thereafter, via the constructed nonlocal strain gradient refined beam model, the nonlinear primary resonance of laminated functionally graded graphene platelet-reinforced composite (FG-GPLRC) microbeams under external harmonic excitation is studied in the presence of the both hardening-stiffness and softening-stiffness size effects. The graphene platelets are randomly dispersed in each individual layer in such a way that the weight fraction of the reinforcement varies on the basis of different patterns of FG dispersion. Based upon the Halpin-Tsai micromechanical scheme, the effective material properties of laminated FG-GPLRC microbeams are achieved. By putting the Hamilton's principle to use, the nonlocal strain gradient equations of motion are developed. After that, a numerical solving process using the generalized differential quadrature (GDQ) method together with the Galerkin technique is employed to obtain the nonlocal strain gradient frequency response and amplitude response associated with the nonlinear primary resonance of laminated FG-GPLRC microbeams. It is found that the nonlocality size effect leads to an increase in the peak of the jump phenomenon and the associated excitation frequency, while the strain gradient size dependency results in a reduction in both of them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据