4.7 Article

Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach

期刊

ENGINEERING STRUCTURES
卷 197, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2019.02.005

关键词

U-shaped steel damper; Cyclic Loading; Energy dissipation; Shape optimization; Support vector machine; Particle swarm optimization algorithm

向作者/读者索取更多资源

U-shaped steel damper (USSD), as an energy dissipation device, has been recommended in the literature for using in the isolation systems. This type of damper is capable of appropriately dissipating the input energy which a structure imparts from an earthquake. The capability is provided through a large range of plastic deformations occurred in the USSD. This paper aimed at presenting a methodology structured in the framework of a shape optimization problem to enhance the seismic energy dissipation and deformation capability of the USSD under cyclic loading. To achieve this goal, the straight part, thickness and height of the USSD were considered as the design variables of the optimization problem and optimized through maximizing the ratio of energy dissipation through plastic deformation to the maximum equivalent plastic strain. In order to find the optimum shape of the USSD under cyclic loading, a hybrid approach consisted of two phases was applied. In the first phase, as an alternative for the time-consuming finite element analysis, a support vector machine (SVM) approach was trained, tested and used to predict the inelastic responses of the USSD. In the second phase, a modified particle swarm optimization (PSO) algorithm was adopted to find the optimum shape of the USSD subjected to two critical directions of cyclic loading. After finding the optimum shape of the USSD, the energy dissipation and deformation capability of the optimum shaped-USSD were assessed. Results demonstrate that the proposed shape optimization methodology renders an optimum-shaped USSD with significantly improved energy dissipation and deformation capability compared with those of available in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据